Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895462

RESUMO

Bowiea volubilis subsp. volubilis is primarily used to address human respiratory infections, coughs, and colds due to its diverse pharmaceutical properties. Notably, the plant contains alkaloids that exhibit notable antifungal, antibacterial, and cytotoxic properties. Additionally, the presence of saponins, with recognized antioxidant and anticancer attributes, further contributes to its medicinal potential. Steroid compounds inherent to the plant have been associated with anti-inflammatory and anticancer activities. Moreover, the bulb of B. volubilis has been associated as a source of various cardiac glycosides. Despite these therapeutic prospects, B. volubilis remains inedible due to the presence of naturally occurring toxic substances that pose risks to both animals and humans. The review focuses on a comprehensive exploration concerning B. volubilis ethnobotanical applications, phytochemical properties, and diverse biological activities in relation to in vitro and in vivo applications for promoting human health and disease prevention. The aim of the study is to comprehensively investigate the phytochemical composition, bioactive compounds, and potential medicinal properties of Bowiea volubilis, with the ultimate goal of uncovering its therapeutic applications for human health. This review also highlights an evident gap in research, i.e., insufficient evidence-based research on toxicity data. This void in knowledge presents a promising avenue for future investigations, opening doors to expanded inquiries into the properties and potential applications of B. volubilis in the context of human diseases.

2.
Antioxidants (Basel) ; 9(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069826

RESUMO

Extracts of Sutherlandia frutescens (cancer bush) exhibit considerable qualitative and quantitative chemical variability depending on their natural wild origins. The purpose of this study was thus to determine bioactivity of extracts from different regions using in vitro antioxidant and anti-cancer assays. Extracts of the species are complex and are predominantly composed of a species-specific set of triterpene saponins (cycloartanol glycosides), the sutherlandiosides, and flavonoids (quercetin and kaempferol glycosides), the sutherlandins. For the Folin-Ciocalteu phenolics test values of 93.311 to 125.330 mg GAE/g DE were obtained. The flavonoids ranged from 54.831 to 66.073 mg CE/g DE using the aluminum chloride assay. Extracts from different sites were also assayed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging method and ferric reducing anti-oxidant power (FRAP) methods. This was followed by an in vitro Cell Titer-Glo viability assay of various ecotypes using the DLD-1 colon cancer cell line. All test extracts displayed anti-oxidant activity through the DPPH• radical scavenging mechanism, with IC50 values ranging from 3.171 to 7.707 µg·mL-1. However, the degree of anti-oxidant effects differed on a chemotypic basis with coastal plants from Gansbaai and Pearly Beach (Western Cape) exhibiting superior activity whereas the Victoria West inland group from the Northern Cape, consistently showed the weakest anti-oxidant activity for both the DPPH• and FRAP methods. All extracts showed cytotoxicity on DLD-1 colon cancer cells at the test concentration of 200 µg·mL-1 but Sutherlandia plants from Colesburg (Northern Cape) exhibited the highest anti-cancer activity. These findings confirm that S. frutescens specimens display variability in their bioactive capacities based on their natural location, illustrating the importance of choosing relevant ecotypes for medicinal purposes.

3.
BMC Complement Altern Med ; 18(1): 273, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290800

RESUMO

BACKGROUND: Sutherlandia frutescens is one of the most promising commercialized, indigenous and medicinal plants of South Africa that is used as an immune-booster, and a traditional treatment for cancer. However, few studies report on its toxicology and dosage in vivo. There is still room to better understand its cytotoxicity effects in animal systems. METHODS: We prepared two extracts, one with 80% (v/v) ethanol, and the other, with water. Both were studied to determine the maximum tolerable concentration when extracts were applied at 0 to 200 µg/ml to a Tuebingen zebrafish embryo line. The development of zebrafish embryos after 24 h post fertilization (hpf) was studied. A concentration range of 5 µg/ml to 50 µg/ml was then chosen to monitor the ontological development of cultured embryos. A liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method was used to study the differences of the two experimental extracts. Chemical variation between the extracts was illustrated using chemometrics. RESULTS: Both extracts led to bleeding and pericardial cyst formation when applied at high concentrations to the zebrafish embryo culture. Chronic teratogenic toxicities, leading to pericardial edema, yolk sac swelling, and other abnormal developmental characteristics, were detected. The aqueous extracts of S. frutescens were less toxic to the larvae than the ethanol extracts, validating preference for aqueous preparations when used in traditional medicine. Chemical differences between the water extracts and alcoholic extracts were analysed using LC-MS/MS. A supervised metabolomics approach, targeting the sutherlandiosides and sutherlandins using orthogonal partial least squares-discriminant analysis (OPLS-DA), illustrated that sutherlandiosides were the main chemical features that can be used to distinguish between the two extracts, despite the extracts being highly similar in their chemical constituents. CONCLUSION: The water extract caused less cytotoxic and abnormal developmental effects compared to the ethanolic extract, and, this is likely due to differences in concentrations of extracted chemicals rather than the chemical profile per se. This study provides more evidence of cytotoxicity effects linked to S. frutescens using the zebrafish embryo bioassay as a study tool.


Assuntos
Fabaceae/química , Fabaceae/toxicidade , Coração/efeitos dos fármacos , Larva/efeitos dos fármacos , Extratos Vegetais/toxicidade , Plantas Medicinais/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Bioensaio , Coração/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Modelos Animais , Extratos Vegetais/química , Plantas Medicinais/química , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...